Week G7: Semi-Supervised GAN theory and practice

This article is the learning record blog in the 365-day deep learning training camp

Reference article: 365-day deep learning training camp – Week G7: Semi-Supervised GAN theory and practice (readable by internal members of the training camp)

Original author: K student | Tutoring, project customization

Operating environment:
Computer system: Windows 10
Locale: python 3.10
Compiler: Pycharm 2022.1.1
Deep learning environment: Pytorch

Table of Contents

1. Explanation of theoretical knowledge

2. Code implementation

1. Configuration code

2. Initialize weights

3. Define algorithm model

4. Configure the model

5. Training model


1. Explanation of theoretical knowledge

This algorithm extends the Generative Adversarial Network (GAN) to semi-supervised learning by forcing the discriminator D to output category labels. us
Train a generator G and a discriminator D on a data set, and the input is one of N categories. During training, the discriminator D is used to predict which of the N + 1 categories the input belongs to. This N + 1 corresponds to the output of the generator G. The discriminator here
D also acts as a classifier C. This method can be used to train a better discriminator D and can produce higher quality samples than ordinary GANs. Semi-Supervised GAN has the following advantages:
(1) The author made a new extension to GANs, allowing it to learn a generative model and a classifier simultaneously. We call this extension semi-supervised GAN or SGAN
(2) The experimental results of the paper show that SGAN improves classification performance in limited data sets compared with the baseline classifier without generation part.
(3) The experimental results of the paper show that SGAN can significantly improve the quality of generated samples and reduce the training time of the generator.

2. Code Implementation

1. Configuration code
import argparse
import os
import numpy as np
import math

import torchvision.transforms as transforms
from torchvision.utils import save_image

from torch.utils.data import DataLoader
from torchvision import datasets
from torch.autograd import Variable

import torch.nn as nn
import torch.nn.functional as F
import torch

os.makedirs("images", exist_ok=True)

parser = argparse.ArgumentParser()
parser.add_argument("--n_epochs", type=int, default=2, help="number of epochs of training")
parser.add_argument("--batch_size", type=int, default=64, help="size of the batches")
parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate")
parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient")
parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient")
parser.add_argument("--n_cpu", type=int, default=2, help="number of cpu threads to use during batch generation")
parser.add_argument("--latent_dim", type=int, default=100, help="dimensionality of the latent space")
parser.add_argument("--num_classes", type=int, default=10, help="number of classes for dataset")
parser.add_argument("--img_size", type=int, default=32, help="size of each image dimension")
parser.add_argument("--channels", type=int, default=1, help="number of image channels")
parser.add_argument("--sample_interval", type=int, default=400, help="interval between image sampling")
opt = parser.parse_args(args=[])
print(opt)

cuda = True if torch.cuda.is_available() else False
Namespace(n_epochs=2, batch_size=64, lr=0.0002, b1=0.5, b2=0.999, n_cpu=2, latent_dim=100, num_classes=10, img_size=32, channels=1, sample_interval=400)< /pre>
</blockquote>
<h5 id=" 2. Initialization weight"> 2. Initialization weight</h5>
<pre>def weights_init_normal(m):
    classname = m.__class__.__name__
    if classname.find("Conv") != -1:
        torch.nn.init.normal_(m.weight.data, 0.0, 0.02)
    elif classname.find("BatchNorm") != -1:
        torch.nn.init.normal_(m.weight.data, 1.0, 0.02)
        torch.nn.init.constant_(m.bias.data, 0.0)
3. Define algorithm model
class Generator(nn.Module):
    def __init__(self):
        super(Generator, self).__init__()

        self.label_emb = nn.Embedding(opt.num_classes, opt.latent_dim)

        self.init_size = opt.img_size // 4 # Initial size before upsampling
        self.l1 = nn.Sequential(nn.Linear(opt.latent_dim, 128 * self.init_size ** 2))

        self.conv_blocks = nn.Sequential(
            nn.BatchNorm2d(128),
            nn.Upsample(scale_factor=2),
            nn.Conv2d(128, 128, 3, stride=1, padding=1),
            nn.BatchNorm2d(128, 0.8),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Upsample(scale_factor=2),
            nn.Conv2d(128, 64, 3, stride=1, padding=1),
            nn.BatchNorm2d(64, 0.8),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv2d(64, opt.channels, 3, stride=1, padding=1),
            nn.Tanh(),
        )

    def forward(self, noise):
        out = self.l1(noise)
        out = out.view(out.shape[0], 128, self.init_size, self.init_size)
        img = self.conv_blocks(out)
        return img


class Discriminator(nn.Module):
    def __init__(self):
        super(Discriminator, self).__init__()

        def discriminator_block(in_filters, out_filters, bn=True):
            """Returns layers of each discriminator block"""
            block = [nn.Conv2d(in_filters, out_filters, 3, 2, 1), nn.LeakyReLU(0.2, inplace=True), nn.Dropout2d(0.25)]
            ifbn:
                block.append(nn.BatchNorm2d(out_filters, 0.8))
            return block

        self.conv_blocks = nn.Sequential(
            *discriminator_block(opt.channels, 16, bn=False),
            *discriminator_block(16, 32),
            *discriminator_block(32, 64),
            *discriminator_block(64, 128),
        )

        # The height and width of downsampled image
        ds_size = opt.img_size // 2 ** 4

        #Output layers
        self.adv_layer = nn.Sequential(nn.Linear(128 * ds_size ** 2, 1), nn.Sigmoid())
        self.aux_layer = nn.Sequential(nn.Linear(128 * ds_size ** 2, opt.num_classes + 1), nn.Softmax())

    def forward(self, img):
        out = self.conv_blocks(img)
        out = out.view(out.shape[0], -1)
        validity = self.adv_layer(out)
        label = self.aux_layer(out)

        return validity, label
4. Configuration model
# Loss functions
adversarial_loss = torch.nn.BCELoss()
auxiliary_loss = torch.nn.CrossEntropyLoss()

# Initialize generator and discriminator
generator = Generator()
discriminator = Discriminator()

if cuda:
    generator.cuda()
    discriminator.cuda()
    adversarial_loss.cuda()
    auxiliary_loss.cuda()

#Initialize weights
generator.apply(weights_init_normal)
discriminator.apply(weights_init_normal)

# Configure data loader
os.makedirs("../../data/mnist", exist_ok=True)
dataloader = torch.utils.data.DataLoader(
    datasets.MNIST(
        "../../data/mnist",
        train=True,
        download=True,
        transform=transforms.Compose(
            [transforms.Resize(opt.img_size), transforms.ToTensor(), transforms.Normalize([0.5], [0.5])]
        ),
    ),
    batch_size=opt.batch_size,
    shuffle=True,
)

#Optimizers
optimizer_G = torch.optim.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))

FloatTensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
LongTensor = torch.cuda.LongTensor if cuda else torch.LongTensor
Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz
Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz to ../../data/mnist\MNIST\raw\train-images-idx3-ubyte. gz
Extracting ../../data/mnist\MNIST\raw\train-images-idx3-ubyte.gz to ../../data/mnist\MNIST\raw

Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz
Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz to ../../data/mnist\MNIST\raw\train-labels-idx1-ubyte. gz
Extracting ../../data/mnist\MNIST\raw\train-labels-idx1-ubyte.gz to ../../data/mnist\MNIST\raw

Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz
Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz to ../../data/mnist\MNIST\raw\t10k-images-idx3-ubyte. gz
Extracting ../../data/mnist\MNIST\raw\t10k-images-idx3-ubyte.gz to ../../data/mnist\MNIST\raw

Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz
Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz to ../../data/mnist\MNIST\raw\t10k-labels-idx1-ubyte. gz
Extracting ../../data/mnist\MNIST\raw\t10k-labels-idx1-ubyte.gz to ../../data/mnist\MNIST\raw
5. Training model
# ----------
#Training
# ----------

for epoch in range(opt.n_epochs):
    for i, (imgs, labels) in enumerate(dataloader):

        batch_size = imgs.shape[0]

        #Adversarial ground truths
        valid = Variable(FloatTensor(batch_size, 1).fill_(1.0), requires_grad=False)
        fake = Variable(FloatTensor(batch_size, 1).fill_(0.0), requires_grad=False)
        fake_aux_gt = Variable(LongTensor(batch_size).fill_(opt.num_classes), requires_grad=False)

        # Configure input
        real_imgs = Variable(imgs.type(FloatTensor))
        labels = Variable(labels.type(LongTensor))

        # -----------------
        #TrainGenerator
        # -----------------

        optimizer_G.zero_grad()

        # Sample noise and labels as generator input
        z = Variable(FloatTensor(np.random.normal(0, 1, (batch_size, opt.latent_dim))))

        #Generate a batch of images
        gen_imgs = generator(z)

        # Loss measures generator's ability to fool the discriminator
        validity, _ = discriminator(gen_imgs)
        g_loss = adversarial_loss(validity, valid)

        g_loss.backward()
        optimizer_G.step()

        #------------------------
        #TrainDiscriminator
        #------------------------

        optimizer_D.zero_grad()

        #Loss for real images
        real_pred, real_aux = discriminator(real_imgs)
        d_real_loss = (adversarial_loss(real_pred, valid) + auxiliary_loss(real_aux, labels)) / 2

        #Loss for fake images
        fake_pred, fake_aux = discriminator(gen_imgs.detach())
        d_fake_loss = (adversarial_loss(fake_pred, fake) + auxiliary_loss(fake_aux, fake_aux_gt)) / 2

        # Total discriminator loss
        d_loss = (d_real_loss + d_fake_loss) / 2

        # Calculate discriminator accuracy
        pred = np.concatenate([real_aux.data.cpu().numpy(), fake_aux.data.cpu().numpy()], axis=0)
        gt = np.concatenate([labels.data.cpu().numpy(), fake_aux_gt.data.cpu().numpy()], axis=0)
        d_acc = np.mean(np.argmax(pred, axis=1) == gt)

        d_loss.backward()
        optimizer_D.step()

        batches_done = epoch * len(dataloader) + i
        if batches_done % opt.sample_interval == 0:
            save_image(gen_imgs.data[:25], "images/%d.png" % batches_done, nrow=5, normalize=True)

    print(
        "[Epoch %d/%d] [Batch %d/%d] [D loss: %f, acc: %d%%] [G loss: %f]"
        % (epoch, opt.n_epochs, i, len(dataloader), d_loss.item(), 100 * d_acc, g_loss.item())
    )
[Epoch 0/2] [Batch 937/938] [D loss: 1.358861, acc: 50%] [G loss: 0.671799]
[Epoch 1/2] [Batch 937/938] [D loss: 1.343094, acc: 50%] [G loss: 0.681119]

The knowledge points of the article match the official knowledge files, and you can further learn relevant knowledge. Python entry skill treeArtificial intelligenceDeep learning 386,407 people are learning the system