Find the number of connected blocks (dfs, bfs)

AC code:
1. bfs

import javax.swing.*;
import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.math.BigInteger;
import java.nio.file.attribute.AclEntryFlag;
import java.security.AlgorithmConstraints;
import java.sql.Struct;
import java.text.CollationElementIterator;
import java.text.DateFormatSymbols;
import java.util.*;
import java.util.stream.Collectors;


public class Main
{
    static PrintWriter pw = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
    static int N = (int)0 + 20;
    static math_myself math_me = new math_myself();
    static char g[][] = new char[N][N];
    static boolean used[][] = new boolean[N][N];
    static int dx[] = {-1,0,1,0},dy[] = {0,1,0,-1};
    static Queue<PII> q = new LinkedList<>();

    static int n,m;

    static int bfs(int x, int y)
    {
        q.add(new PII(x,y));
        used[x][y] = true;
        int cnt = 1; // The starting point is the black brick, so it should also be counted

        while(q. size() > 0)
        {
            PII t = q.poll();

            for(int i = 0 ; i < 4 ; i ++ )
            {
                int x_cur = t.x + dx[i],y_cur = t.y + dy[i];
                if(x_cur < 0 || x_cur >= n || y_cur < 0 || y_cur >= m) continue; // Do not go beyond the boundary
                if (used[x_cur][y_cur]) continue; // The tiles that have passed will not go
                if (g[x_cur][y_cur] != '.') continue; // If it is not a brand new black tile, it will not go away

                // Brand new black tiles must be walkable
                used[x_cur][y_cur] = true;
                q.add(new PII(x_cur,y_cur));
                cnt + + ;
            }
        }
        return cnt;
    }

    public static void main(String[] args ) throws IOException
    {
        while(true)
        {
            q. clear();
            for(int i = 0 ; i < n; i ++ ) Arrays.fill(used[i],false);
            // Normally, input n first, then m, this question is reversed
            m = rd.nextInt();
            n = rd.nextInt();

            if (m == 0 || n == 0) break;
            // read the matrix
            for(int i = 0 ; i < n ; i ++ ) g[i] = rd.next().toCharArray();

            // find the starting point
            int x = 0, y = 0, flag = 0;
            for(int i = 0 ; i < n ; i ++ )
            {
                for(int j = 0 ; j < m ; j ++ )
                {
                    if(g[i][j] == '@')
                    {
                        x = i;
                        y = j;
                        flag = 1;
                    }
                    if (flag == 1) break;
                }
            }

            pw. println(bfs(x,y));
        }
        pw.flush();
    }
}

class rd
{
    static BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
    static StringTokenizer tokenizer = new StringTokenizer("");

    static String nextLine() throws IOException { return reader. readLine(); }

    static String next() throws IOException
    {
        while (!tokenizer.hasMoreTokens()) tokenizer = new StringTokenizer(reader.readLine());
        return tokenizer. nextToken();
    }

    static int nextInt() throws IOException { return Integer. parseInt(next()); }

    static double nextDouble() throws IOException { return Double. parseDouble(next()); }

    static long nextLong() throws IOException { return Long. parseLong(next());}

    static BigInteger nextBigInteger() throws IOException
    {
        BigInteger d = new BigInteger(rd. nextLine());
        return d;
    }
}

class PII
{
    int x,y;
    public PII(int x ,int y)
    {
        this.x = x;
        this.y = y;
    }
}

class math_myself
{
    int gcd(int a, int b)
    {
        if(b == 0) return a;
        else return gcd(b,a % b);
    }

    int lcm(int a,int b)
    {
        return a * b / gcd(a, b);
    }

    // Find all divisors of n
    List get_factor(int n)
    {
        List<Long> a = new ArrayList<>();
        for(long i = 1; i <= Math. sqrt(n) ; i ++ )
        {
            if(n % i == 0)
            {
                a.add(i);
                if(i != n / i) a.add(n / i); // // Avoid the situation: when x = 16, i = 4, x / i = 4, this will add two situations ^-^How much can the complexity be reduced?
            }
        }

        // Deduplication of the same factor, this method is perfect
        a = a. stream(). distinct(). collect(Collectors. toList());

        // Sort the factors (ascending)
        Collections. sort(a);

        return a;
    }

    // Check if it is a prime number
    boolean check_isPrime(int n)
    {
        if(n < 2) return false;
        for(int i = 2 ; i <= n / i; i ++ ) if (n % i == 0) return false;
        return true;
    }
}

2. dfs

import javax.swing.*;
import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.math.BigInteger;
import java.nio.file.attribute.AclEntryFlag;
import java.security.AlgorithmConstraints;
import java.sql.Struct;
import java.text.CollationElementIterator;
import java.text.DateFormatSymbols;
import java.util.*;
import java.util.stream.Collectors;


public class Main
{
    static PrintWriter pw = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
    static int N = (int)0 + 20;
    static math_myself math_me = new math_myself();
    static char g[][] = new char[N][N];
    static int dx[] = {-1,0,1,0},dy[] = {0,1,0,-1};
    static int n,m;
    static int cnt;

    // Only brand new black tiles will enter dfs
    static void dfs(int x, int y)
    {
        g[x][y] = '#'; // The points that have been passed become red tiles to avoid repeated walking
        cnt + + ; // the black ones that walked
        for(int i = 0 ; i < 4 ; i ++ )
        {
            int x_cur = x + dx[i],y_cur = y + dy[i];
            if(x_cur < 0 || x_cur >= n || y_cur < 0 || y_cur >= m || g[x_cur][y_cur] == '#') continue; // red tiles or black tiles walked (turns into a red tile) will not enter dfs
            dfs(x_cur,y_cur);
        }
    }

    public static void main(String[] args ) throws IOException
    {
        while(true)
        {
            cnt = 0;
            // Normally, input n first, then m, this question is reversed
            m = rd.nextInt();
            n = rd.nextInt();

            if (m == 0 || n == 0) break;
            // read the matrix
            for(int i = 0 ; i < n ; i ++ ) g[i] = rd.next().toCharArray();

            // find the starting point
            int x = 0, y = 0, flag = 0;
            for(int i = 0 ; i < n ; i ++ )
            {
                for(int j = 0 ; j < m ; j ++ )
                {
                    if(g[i][j] == '@')
                    {
                        x = i;
                        y = j;
                        flag = 1;
                    }
                    if (flag == 1) break;
                }
            }

            dfs(x,y); // pass in the starting point

            pw. println(cnt);
        }
        pw.flush();
    }
}

class rd
{
    static BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
    static StringTokenizer tokenizer = new StringTokenizer("");

    static String nextLine() throws IOException { return reader. readLine(); }

    static String next() throws IOException
    {
        while (!tokenizer.hasMoreTokens()) tokenizer = new StringTokenizer(reader.readLine());
        return tokenizer. nextToken();
    }

    static int nextInt() throws IOException { return Integer. parseInt(next()); }

    static double nextDouble() throws IOException { return Double. parseDouble(next()); }

    static long nextLong() throws IOException { return Long. parseLong(next());}

    static BigInteger nextBigInteger() throws IOException
    {
        BigInteger d = new BigInteger(rd. nextLine());
        return d;
    }
}

class PII
{
    int x,y;
    public PII(int x ,int y)
    {
        this.x = x;
        this.y = y;
    }
}

class math_myself
{
    int gcd(int a, int b)
    {
        if(b == 0) return a;
        else return gcd(b,a % b);
    }

    int lcm(int a,int b)
    {
        return a * b / gcd(a, b);
    }

    // Find all divisors of n
    List get_factor(int n)
    {
        List<Long> a = new ArrayList<>();
        for(long i = 1; i <= Math. sqrt(n) ; i ++ )
        {
            if(n % i == 0)
            {
                a.add(i);
                if(i != n / i) a.add(n / i); // // Avoid the situation: when x = 16, i = 4, x / i = 4, this will add two situations ^-^How much can the complexity be reduced?
            }
        }

        // Deduplication of the same factor, this method is perfect
        a = a. stream(). distinct(). collect(Collectors. toList());

        // Sort the factors (ascending)
        Collections. sort(a);

        return a;
    }

    // Check if it is a prime number
    boolean check_isPrime(int n)
    {
        if(n < 2) return false;
        for(int i = 2 ; i <= n / i; i ++ ) if (n % i == 0) return false;
        return true;
    }
}