Serial communication based on interrupt DMA

Article directory

      • 1. Configure this project through stm32CubeMX
          • 1Set up RCC
          • 2Set up SYS
          • 3Set up USART
          • 4Set up NVIC
          • 5 clock tree
          • 6Create a project.
      • 2 keil debugging
      • 3. Burn and check the effect

Configure this project through stm32CubeMX

1Set RCC

High Speed Clock Select Crystal.

2Set SYS

Debug select Serial wire.

3Set USART

Mode selects Asynchronous.

4Set NVIC

Check the Enabled option of USART1.

5 Clock Tree

6Create project.

Second keil debugging

Add header files #include "stdio.h" to main.c and usart.c

In the usart.c file, add the following code

/* USER CODE BEGIN 1 */

//Add the following code to support the printf function without selecting use MicroLIB
//#define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f)
#if 1
//#pragma import(__use_no_semihosting)
//Support functions required by the standard library
struct __FILE
{<!-- -->
int handle;
};

FILE __stdout;
//Define _sys_exit() to avoid using semi-hosting mode
void _sys_exit(int x)
{<!-- -->
x = x;
}
//Redefine the fputc function
int fputc(int ch, FILE *f)
{<!-- -->
HAL_UART_Transmit( & amp;huart1, (uint8_t *) & amp;ch, 1, 0x0001);
return ch;
}
#endif

/* USER CODE END 1 */

The entire code of the main function.

/* USER CODE BEGIN Header */
/**
  *************************************************** ****************************
  * @file: main.c
  * @brief: Main program body
  *************************************************** ****************************
  * @attention
  *
  * Copyright (c) 2023 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  *************************************************** ****************************
  */
/* USER CODE END Header */
/* Includes ----------------------------------------------- ------------------*/
#include "main.h"
#include "usart.h"
#include "gpio.h"
#include "stdio.h"



/* Private includes -------------------------------------------------- ----------*/
/* USER CODE BEGIN Includes */

/* USER CODE END Includes */

/* Private typedef ----------------------------------------------- -------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define -------------------------------------------------- ---------------*/
/* USER CODE BEGIN PD */

/* USER CODE END PD */

/* Private macro ----------------------------------------------- ---------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables -------------------------------------------------- -----------*/

/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes ------------------------------------------------ --*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/*Private user code------------------------------------------------ ----------*/
/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

/**
  * @brief The application entry point.
  * @retval int
  */
void SystemClock_Config(void);
/* USER CODE BEGIN PFP */
uint8_t aRxBuffer; //
uint8_t Uart1_RxBuff[256]; //
uint8_t Uart1_Rx_Cnt = 0; //
uint8_t str1[20] = "stop";
uint8_t str2[20] = "start"; //
uint8_t cAlmStr[] = "êy?Yò?3?(′óóú256)\r\
";
int flag=1;

void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
{<!-- -->
  /* Prevent unused argument(s) compilation warning */
  UNUSED(huart);
  /* NOTE: This function Should not be modified, when the callback is needed,
           the HAL_UART_TxCpltCallback could be implemented in the user file
   */
    /*if(Uart1_RxBuff[0]=='s')
{
flag=0;
}
\t
if(Uart1_RxBuff[0]=='t')
{
flag=1;
}
\t\t\t
*/
if (strcmp(Uart1_RxBuff, str1) == 0) flag = 0;
if (strcmp(Uart1_RxBuff, str2) == 0) flag = 1;
if(Uart1_Rx_Cnt >= 255) //
{<!-- -->
Uart1_Rx_Cnt = 0;
memset(Uart1_RxBuff,0x00,sizeof(Uart1_RxBuff));
HAL_UART_Transmit( & amp;huart1, (uint8_t *) & amp;cAlmStr, sizeof(cAlmStr),0xFFFF);
}
else
{<!-- -->
Uart1_RxBuff[Uart1_Rx_Cnt + + ] = aRxBuffer; //
\t  
if((Uart1_RxBuff[Uart1_Rx_Cnt-1] == 0x0A) & amp; & amp;(Uart1_RxBuff[Uart1_Rx_Cnt-2] == 0x0D)) //?
{<!-- -->
\t\t\t
HAL_UART_Transmit( & amp;huart1, (uint8_t *) & amp;Uart1_RxBuff, Uart1_Rx_Cnt,0xFFFF); //
Uart1_Rx_Cnt = 0;
memset(Uart1_RxBuff,0x00,sizeof(Uart1_RxBuff)); //
}
}
\t
HAL_UART_Receive_IT( & amp;huart1, (uint8_t *) & amp;aRxBuffer, 1); //?
}


int main(void)
{<!-- -->
  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration------------------------------------------------- ----------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_USART1_UART_Init();
HAL_UART_Receive_IT( & amp;huart1, (uint8_t *) & amp;aRxBuffer, 1);
  /* USER CODE BEGIN 2 */

  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {<!-- -->
    /* USER CODE END WHILE */
if(flag==1)
{<!-- -->
printf("Hello windows!\r\
");
HAL_Delay(500);
}
    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{<!-- -->
  RCC_OscInitTypeDef RCC_OscInitStruct = {<!-- -->0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {<!-- -->0};

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
  if (HAL_RCC_OscConfig( & amp;RCC_OscInitStruct) != HAL_OK)
  {<!-- -->
    Error_Handler();
  }

  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig( & amp;RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  {<!-- -->
    Error_Handler();
  }
}


/* USER CODE BEGIN 4 */

/* USER CODE END 4 */

/**
  * @brief This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{<!-- -->
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {<!-- -->
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef USE_FULL_ASSERT
/**
  * @brief Reports the name of the source file and the source line number
  * where the assert_param error has occurred.
  * @param file: pointer to the source file name
  * @param line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{<!-- -->
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\
", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

Three burns and check the effect