Example 6: Auto-Encoder (autoencoder) actual combat

1. Network structure diagram

70e1c021742749bebe51f6842b2e8fd8.png

2. Distribution analysis

Import the corresponding modules and complete the data preparation work

import os
import tensorflow astf
import numpy as np
from tensorflow import keras
from tensorflow.keras import Sequential, layers
from PIL import Image
from matplotlib import pyplot as plt

tf.random.set_seed(22)
np.random.seed(22)
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
assert tf.__version__.startswith('2.')

h_dim = 20
batchsz = 512
lr=1e-3


(x_train, y_train), (x_test, y_test) = keras.datasets.fashion_mnist.load_data()
x_train, x_test = x_train.astype(np.float32) / 255., x_test.astype(np.float32) / 255.
# we do not need label
train_db = tf.data.Dataset.from_tensor_slices(x_train)
train_db = train_db.shuffle(batchsz * 5).batch(batchsz)
test_db = tf.data.Dataset.from_tensor_slices(x_test)
test_db = test_db.batch(batchsz)

print(x_train.shape, y_train.shape)
print(x_test.shape, y_test.shape)

Write a function to save images

def save_images(imgs, name):
    new_im = Image.new('L', (280, 280))

    index = 0
    for i in range(0, 280, 28):
        for j in range(0, 280, 28):
            im = imgs[index]
            im = Image.fromarray(im, mode='L')
            new_im.paste(im, (i, j))
            index + = 1

    new_im.save(name)

Define AE network model

class AE(keras.Model):

    def __init__(self):
        super(AE, self).__init__()

        #Encoders
        self.encoder = Sequential([
            layers.Dense(256, activation=tf.nn.relu),
            layers.Dense(128, activation=tf.nn.relu),
            layers.Dense(h_dim)
        ])

        #Decoders
        self.decoder = Sequential([
            layers.Dense(128, activation=tf.nn.relu),
            layers.Dense(256, activation=tf.nn.relu),
            layers.Dense(784)
        ])


    def call(self, inputs, training=None):
        # [b, 784] => [b, 10]
        h = self.encoder(inputs)
        # [b, 10] => [b, 784]
        x_hat = self.decoder(h)

        return x_hat

Initialize the model and select the optimizer

model = AE()
model.build(input_shape=(None, 784))
model.summary()

optimizer = tf.optimizers.Adam(lr=lr)

Start training and save the reconstructed images after each epoch to the folder ae_image

Pay attention to the size of the data in each step, which is achieved through reshape

for epoch in range(100):

    for step, x in enumerate(train_db):

        #[b, 28, 28] => [b, 784]
        x = tf.reshape(x, [-1, 784])

        with tf.GradientTape() as tape:
            x_rec_logits = model(x)

            rec_loss = tf.losses.binary_crossentropy(x, x_rec_logits,
            from_logits=True)
            rec_loss = tf.reduce_mean(rec_loss)

        grads = tape.gradient(rec_loss, model.trainable_variables)
        optimizer.apply_gradients(zip(grads, model.trainable_variables))


        if step % 100 ==0:
            print(epoch, step, float(rec_loss))


        #evaluation
        x = next(iter(test_db))
        logits = model(tf.reshape(x, [-1, 784]))
        x_hat = tf.sigmoid(logits)
        # [b, 784] => [b, 28, 28]
        x_hat = tf.reshape(x_hat, [-1, 28, 28])

        # [b, 28, 28] => [2b, 28, 28]
        x_concat = tf.concat([x, x_hat], axis=0)
        x_concat = x_hat
        x_concat = x_concat.numpy() * 255.
        x_concat = x_concat.astype(np.uint8)
        save_images(x_concat, 'ae_images/rec_epoch_%d.png'%epoch)

3. Complete code

import os
import tensorflow astf
import numpy as np
from tensorflow import keras
from tensorflow.keras import Sequential, layers
from PIL import Image
from matplotlib import pyplot as plt



tf.random.set_seed(22)
np.random.seed(22)
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
assert tf.__version__.startswith('2.')


def save_images(imgs, name):
    new_im = Image.new('L', (280, 280))

    index = 0
    for i in range(0, 280, 28):
        for j in range(0, 280, 28):
            im = imgs[index]
            im = Image.fromarray(im, mode='L')
            new_im.paste(im, (i, j))
            index + = 1

    new_im.save(name)


h_dim = 20
batchsz = 512
lr=1e-3


(x_train, y_train), (x_test, y_test) = keras.datasets.fashion_mnist.load_data()
x_train, x_test = x_train.astype(np.float32) / 255., x_test.astype(np.float32) / 255.
# we do not need label
train_db = tf.data.Dataset.from_tensor_slices(x_train)
train_db = train_db.shuffle(batchsz * 5).batch(batchsz)
test_db = tf.data.Dataset.from_tensor_slices(x_test)
test_db = test_db.batch(batchsz)

print(x_train.shape, y_train.shape)
print(x_test.shape, y_test.shape)



classAE(keras.Model):

    def __init__(self):
        super(AE, self).__init__()

        #Encoders
        self.encoder = Sequential([
            layers.Dense(256, activation=tf.nn.relu),
            layers.Dense(128, activation=tf.nn.relu),
            layers.Dense(h_dim)
        ])

        #Decoders
        self.decoder = Sequential([
            layers.Dense(128, activation=tf.nn.relu),
            layers.Dense(256, activation=tf.nn.relu),
            layers.Dense(784)
        ])


    def call(self, inputs, training=None):
        # [b, 784] => [b, 10]
        h = self.encoder(inputs)
        # [b, 10] => [b, 784]
        x_hat = self.decoder(h)

        return x_hat



model = AE()
model.build(input_shape=(None, 784))
model.summary()

optimizer = tf.optimizers.Adam(lr=lr)

for epoch in range(100):

    for step, x in enumerate(train_db):

        #[b, 28, 28] => [b, 784]
        x = tf.reshape(x, [-1, 784])

        with tf.GradientTape() as tape:
            x_rec_logits = model(x)

            rec_loss = tf.losses.binary_crossentropy(x, x_rec_logits,
            from_logits=True)
            rec_loss = tf.reduce_mean(rec_loss)

        grads = tape.gradient(rec_loss, model.trainable_variables)
        optimizer.apply_gradients(zip(grads, model.trainable_variables))


        if step % 100 ==0:
            print(epoch, step, float(rec_loss))


        # evaluation
        x = next(iter(test_db))
        logits = model(tf.reshape(x, [-1, 784]))
        x_hat = tf.sigmoid(logits)
        # [b, 784] => [b, 28, 28]
        x_hat = tf.reshape(x_hat, [-1, 28, 28])

        # [b, 28, 28] => [2b, 28, 28]
        x_concat = tf.concat([x, x_hat], axis=0)
        x_concat = x_hat
        x_concat = x_concat.numpy() * 255.
        x_concat = x_concat.astype(np.uint8)
        save_images(x_concat, 'ae_images/rec_epoch_%d.png'%epoch)

4. Autoencoder variants

1. Denoising Auto-Encoder

Disturbance (noise) was added before encoding, but it was restored after encoding, which shows that the code really records the semantic features of the picture.

2. Dropout Auto-Encoder

(A dropout of 0 may cause overfitting)

3. Adversarial Auto-Encoder

Related code, pictures from:

Lesson 120 Auto-Encoders Principle_bilibili_bilibili

The knowledge points of the article match the official knowledge files, and you can further learn relevant knowledge. Python entry skill treeArtificial intelligenceDeep learning 388069 people are learning the system