Experiment 1 Estimation of mobile channel propagation model (Hata-Okumura model)

1. Experimental purpose

1. Be familiar with the MATLAB program editing and development environment, and master the specific methods of using this software to solve mobile communication problems;

2. Master the basic knowledge of radio wave propagation loss calculation;

3. Master the use of Hata-Okumura model prediction methods to implement wireless propagation loss prediction systems in large cities, small and medium-sized cities, suburbs, and open rural areas;

4. Deepen the understanding of the Hata-Okumura wireless propagation loss prediction model through wireless propagation loss prediction simulation.

2. Experimental content

1. Learn and understand the principles and implementation methods of the Hata-Okumura wireless propagation loss prediction model;

2. Use MATLAB software to generate several operating frequency points in the range of 300 ~ 1500MHz, and several broadcast distances in the range of 1 ~ 10km;

3. Use MATLAB software to simulate the Hata-Okumura model to implement wireless propagation loss prediction systems in large cities, small and medium-sized cities, suburbs, and open rural areas. The effective antenna height of the base station transmitter is required to be 200m, and the wired antenna height of the mobile station receiver is required. is 3m;

4. Simulate and analyze the predicted values of wireless propagation loss in three environments: big cities, small and medium-sized cities, and suburbs. Under the conditions of multiple sets of operating frequencies, draw the relationship curve between propagation distance and wireless propagation loss and Carry out performance analysis; under the conditions of multiple sets of propagation distances, draw the working frequency-wireless propagation loss relationship curve and conduct performance analysis.

clc;clear;
%Author: YLS
%Hata-Okumura model f: center frequency; hb: effective height of base station antenna; hm: effective height of mobile station antenna, unit: m; d: communication distance, unit: km; a_hm: mobile station antenna height correction;
hm=3;i=0;hb=200;d1=1:0.5:10;
figure()
subplot(221);
for f1=300:300:1500
    a_hm=3.2*(log10(11.75*hm))^2-4.97;Ld1=69.55 + 26.16*log10(f1)-13.82*log10(hb) + (44.9-6.55*log10(hb))*log10(d1) -a_hm;i=i + 1;
    if i==1
        plot(d1,Ld1,'kx-');hold on;
    elseif i==2
        plot(d1,Ld1,'ks-');hold on;
    elseif i==3
        plot(d1,Ld1,'kO-');hold on;
    elseif i==4
        plot(d1,Ld1,'k>-');hold on;
    else
        plot(d1,Ld1,'k*-');hold on;
    end
end
legend('300MHz','600MHz','900MHz','1200MHz','1500MHz');xlabel('Propagation distance (unit km)');ylabel(\ 'Transmission loss L (unit dB)');title('(Big city) transmission loss changes with propagation distance');hold off;i=0;
subplot(222);
for f1=300:300:1500
    a_hm=(1.1*log10(f1)-0.7)*hm-(1.56*log10(f1)-0.8);Lx1=69.55 + 26.16*log10(f1)-13.82*log10(hb) + (44.9-6.55*log10 (hb))*log10(d1)-a_hm;i=i + 1;
    if i==1
        plot(d1,Lx1,'kx-');hold on;
    elseif i==2
        plot(d1,Lx1,'ks-');hold on;
    elseif i==3
        plot(d1,Lx1,'kO-');hold on;
    elseif i==4
        plot(d1,Lx1,'k>-');hold on;
    else
        plot(d1,Lx1,'k*-');hold on;
    end
end
legend('300MHz','600MHz','900MHz','1200MHz','1500MHz');xlabel('Propagation distance (unit km)');ylabel(\ 'Transmission loss L (unit dB)');title('(Small and medium-sized cities) transmission loss changes with propagation distance');hold off;i=0;
subplot(223);
for f1=300:300:1500
    a_hm=3.2*(log10(11.75*hm))^2-4.97;Ld=69.55 + 26.16*log10(f1)-13.82*log10(hb) + (44.9-6.55*log10(hb))*log10(d1) -a_hm;Lj1=Ld-2*(log10(f1/28))^2-5.4;i=i + 1;
    if i==1
        plot(d1,Lj1,'kx-');hold on;
    elseif i==2
        plot(d1,Lj1,'ks-');hold on;
    elseif i==3
        plot(d1,Lj1,'kO-');hold on;
    elseif i==4
        plot(d1,Lj1,'k>-');hold on;
    else
        plot(d1,Lj1,'k*-');hold on;
    end
end
legend('300MHz','600MHz','900MHz','1200MHz','1500MHz');xlabel('Propagation distance (unit km)');ylabel(\ 'Transmission loss L (unit dB)');title('(Suburban) transmission loss variation curve with propagation distance');hold off;i=0;
subplot(224);
for f1=300:300:1500
    a_hm=3.2*(log10(11.75*hm))^2-4.97;Ld=69.55 + 26.16*log10(f1)-13.82*log10(hb) + (44.9-6.55*log10(hb))*log10(d1) -a_hm;Ln1=Ld-4.78*(log10(f1))^2-18.33*log10(f1)-40.98;i=i + 1;
    if i==1
        plot(d1,Ln1,'kx-');hold on;
    elseif i==2
        plot(d1,Ln1,'ks-');hold on;
    elseif i==3
        plot(d1,Ln1,'kO-');hold on;
    elseif i==4
        plot(d1,Ln1,'k>-');hold on;
    else
        plot(d1,Ln1,'k*-');hold on;
    end
end
legend('300MHz','600MHz','900MHz','1200MHz','1500MHz');xlabel('Propagation distance (unit km)');ylabel(\ 'Transmission loss L (unit dB)');title('(Open rural areas) transmission loss changes with propagation distance');hold off;
%Figure II
hm=3;hb=200;i=0;f2=300:100:1500;
figure(2)
subplot(221);
for d2=1:3:10
    a_hm=3.2*(log10(11.75*hm))^2-4.97;Ld2=69.55 + 26.16*log10(f2)-13.82*log10(hb) + (44.9-6.55*log10(hb))*log10(d2) -a_hm;i=i + 1;
    if i==1
        plot(f2,Ld2,'kx-');hold on;
    elseif i==2
        plot(f2,Ld2,'ks-');hold on;
    elseif i==3
        plot(f2,Ld2,'kO-');hold on;
    else
        plot(f2,Ld2,'k*-');hold on;
    end
end
legend('1km','4km','7km','10km');xlabel('Operating frequency (unit Hz)');ylabel('Transmission loss L (unit dB)');title(' (Big City) Transmission Loss Change Curve with Operating Frequency');hold off;i=0;
subplot(222);
for d2=1:3:10
    a_hm=(1.1*log10(f2)-0.7)*hm-(1.56*log10(f2)-0.8);Lx2=69.55 + 26.16*log10(f2)-13.82*log10(hb) + (44.9-6.55*log10 (hb))*log10(d2)-a_hm;i=i + 1;
    if i==1
        plot(f2,Lx2,'kx-');hold on;
    elseif i==2
        plot(f2,Lx2,'ks-');hold on;
    elseif i==3
        plot(f2,Lx2,'kO-');hold on;
    else
        plot(f2,Lx2,'k*-');hold on;
    end
end
legend('1km','4km','7km','10km');xlabel('Operating frequency (unit Hz)');ylabel('Transmission loss L (unit dB)');title('(Small and medium-sized cities) transmission loss changes with operating frequency');hold off;i=0;
subplot(223);
for d2=1:3:10
    a_hm=3.2*(log10(11.75*hm))^2-4.97;Ld=69.55 + 26.16*log10(f2)-13.82*log10(hb) + (44.9-6.55*log10(hb))*log10(d2) -a_hm;Lj2=Ld-2*(log10(f2/28)).^2-5.4;i=i + 1;
    if i==1
        plot(f2,Lj2,'kx-');hold on;
    elseif i==2
        plot(f2,Lj2,'ks-');hold on;
    elseif i==3
        plot(f2,Lj2,'kO-');hold on;
    else
        plot(f2,Lj2,'k*-');hold on;
    end
end
legend('1km','4km','7km','10km');xlabel('Operating frequency (unit Hz)');ylabel('Transmission loss L (unit dB)');title('(Suburban) transmission loss variation curve with operating frequency');hold off;i=0;
subplot(224);
for d2=1:3:10
    a_hm=3.2*(log10(11.75*hm))^2-4.97;Ld=69.55 + 26.16*log10(f2)-13.82*log10(hb) + (44.9-6.55*log10(hb))*log10(d2) -a_hm;Ln2=Ld-4.78*(log10(f2)).^2 + 18.33*log10(f2)-40.98;i=i + 1;
    if i==1
        plot(f2,Ln2,'kx-');hold on;
    elseif i==2
        plot(f2,Ln2,'ks-');hold on;
    elseif i==3
        plot(f2,Ln2,'kO-');hold on;
    else
        plot(f2,Ln2,'k*-');hold on;
    end
end
legend('1km','4km','7km','10km');xlabel('Operating frequency (unit Hz)');ylabel('Transmission loss L (unit dB)');title('(Open rural areas) transmission loss changes with operating frequency');hold off;

The running results are as follows:

Figure 1. Propagation distance-wireless propagation loss relationship

Figure 2. Relationship between operating frequency and wireless propagation loss

The knowledge points of the article match the official knowledge files, and you can further learn related knowledge. Algorithm skill tree Home page Overview 53323 people are learning the system