threeJs sample, modification of webgl2_volume_perlin

The official example webgl2_volume_perlin.html draws the perlin noise, and you can intuitively feel the image shape of the perlin noise. The original example supports cubes, but I changed the cubes to spheres.

<!DOCTYPE html>
<html lang="en">
<head>
<title>three.js webgl2 - volume</title>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, user-scalable=no, minimum-scale=1.0, maximum-scale=1.0">
<link type="text/css" rel="stylesheet" href="main.css">
</head>

<body>
<div id="info">
<a href="https://threejs.org" target="_blank" rel="noopener">three.js</a> webgl2 - volume
</div>

<!-- Import maps polyfill -->
<!-- Remove this when import maps will be widely supported -->
<script async src="//i2.wp.com/unpkg.com/[email protected]/dist/es-module-shims.js"></script>

<script type="importmap">
{<!-- -->
"imports": {<!-- -->
"three": "../build/three.module.js",
"three/addons/": "./jsm/"
}
}
</script>

<script type="module">
import * as THREE from 'three';
import {<!-- --> OrbitControls } from 'three/addons/controls/OrbitControls.js';
import {<!-- --> ImprovedNoise } from 'three/addons/math/ImprovedNoise.js';

import {<!-- --> GUI } from 'three/addons/libs/lil-gui.module.min.js';
import WebGL from 'three/addons/capabilities/WebGL.js';

if ( WebGL.isWebGL2Available() === false ) {<!-- -->

document.body.appendChild( WebGL.getWebGL2ErrorMessage() );

}

let renderer, scene, camera;
let mesh;

init();
animate();

function init() {<!-- -->

renderer = new THREE.WebGLRenderer();
renderer.setPixelRatio( window.devicePixelRatio );
renderer.setSize( window.innerWidth, window.innerHeight );
document.body.appendChild( renderer.domElement );

scene = new THREE.Scene();
scene.add(new THREE.AxesHelper(2000))

camera = new THREE.PerspectiveCamera( 60, window.innerWidth / window.innerHeight, 0.1, 100 );
camera.position.set(0, 0, 2);

new OrbitControls( camera, renderer.domElement );

// Texture

const size = 128;
const data = new Uint8Array( size * size * size );

let i = 0;
const perlin = new ImprovedNoise();
const vector = new THREE.Vector3();

for ( let z = 0; z < size; z + + ) {<!-- -->

for ( let y = 0; y < size; y + + ) {<!-- -->

for ( let x = 0; x < size; x + + ) {<!-- -->

vector.set( x, y, z ).divideScalar( size );

const d = perlin.noise( vector.x * 6.5, vector.y * 6.5, vector.z * 6.5 );

data[ i + + ] = d * 128 + 128;

}

}

}

const texture = new THREE.Data3DTexture( data, size, size, size );
texture.format = THREE.RedFormat;
texture.minFilter = THREE.LinearFilter;
texture.magFilter = THREE.LinearFilter;
texture.unpackAlignment = 1;
texture.needsUpdate = true;

//Material

const vertexShader = /* glsl */`
in vec3 position;

uniform mat4 modelMatrix;
uniform mat4 modelViewMatrix;
uniform mat4 projectionMatrix;
uniform vec3 cameraPos;

out vec3 vOrigin;
out vec3 vDirection;

void main() {
vec4 mvPosition = modelViewMatrix * vec4( position, 1.0 );

vOrigin = vec3( inverse( modelMatrix ) * vec4( cameraPos, 1.0 ) ).xyz;
vDirection = position - cameraPos;

gl_Position = projectionMatrix * mvPosition;
}
`;

const fragmentShader = /* glsl */`
precision highp float;
precision highp sampler3D;

uniform mat4 modelViewMatrix;
uniform mat4 projectionMatrix;
uniform vec3 cameraPos;

in vec3 vOrigin;
in vec3 vDirection;

out vec4 color;

uniform sampler3D map;

uniform float threshold;
uniform float steps;

vec2 hitSphere(vec3 orig, vec3 dir) {
const vec3 sphereCenter = vec3(0.0);
const float sphereRadius = 0.5;
vec3 toSphere = sphereCenter - orig;
float tca = dot(toSphere, dir);
float d2 = dot(toSphere, toSphere) - tca * tca;
float radius2 = sphereRadius * sphereRadius;
if (d2 > radius2) {
return vec2(1.0e6, 1.0e6);
}
float thc = sqrt(radius2 - d2);
// t0 = first intersect point - entrance on front of sphere
float t0 = tca - thc;
// t1 = second intersect point - exit point on back of sphere.
float t1 = tca + thc;
if (t1 < 0.0) {
// t1 is behind the ray
return vec2(1.0e6, 1.0e6);
}
if (t0 < 0.0) {
// t0 is behind the ray
// the ray is inside the sphere, in order to always return an intersect point that is in front of the ray
return vec2(t1, t0);
}
return vec2(t0, t1);
}

vec2 hitBox(vec3 orig, vec3 dir) {
const vec3 box_min = vec3( - 0.5 );
const vec3 box_max = vec3(0.5);
vec3 inv_dir = 1.0/dir;
vec3 tmin_tmp = (box_min - orig) * inv_dir;
vec3 tmax_tmp = (box_max - orig) * inv_dir;
vec3 tmin = min(tmin_tmp, tmax_tmp);
vec3 tmax = max(tmin_tmp, tmax_tmp);
float t0 = max( tmin.x, max( tmin.y, tmin.z ) );
float t1 = min( tmax.x, min( tmax.y, tmax.z ) );
return vec2(t0, t1);
}

float sample1( vec3 p ) {
return texture( map, p ).r;
}

#define epsilon .0001

vec3 normal(vec3 coord) {
if ( coord.x < epsilon ) return vec3( 1.0, 0.0, 0.0 );
if ( coord.y < epsilon ) return vec3( 0.0, 1.0, 0.0 );
if ( coord.z < epsilon ) return vec3( 0.0, 0.0, 1.0 );
if ( coord.x > 1.0 - epsilon ) return vec3( - 1.0, 0.0, 0.0 );
if ( coord.y > 1.0 - epsilon ) return vec3( 0.0, - 1.0, 0.0 );
if ( coord.z > 1.0 - epsilon ) return vec3( 0.0, 0.0, - 1.0 );

float step = 0.01;
float x = sample1( coord + vec3( - step, 0.0, 0.0 ) ) - sample1( coord + vec3( step, 0.0, 0.0 ) );
float y = sample1( coord + vec3( 0.0, - step, 0.0 ) ) - sample1( coord + vec3( 0.0, step, 0.0 ) );
float z = sample1( coord + vec3( 0.0, 0.0, - step ) ) - sample1( coord + vec3( 0.0, 0.0, step ) );

return normalize( vec3( x, y, z ) );
}

void main(){

vec3 rayDir = normalize( vDirection );
// vec2 bounds = hitBox( cameraPos, rayDir );
vec2 bounds = hitSphere( cameraPos, rayDir );

if ( bounds.x > bounds.y ) discard;

bounds.x = max( bounds.x, 0.0 );

vec3 p = cameraPos + bounds.x * rayDir;
vec3 inc = 1.0 / abs( rayDir );
float delta = min( inc.x, min( inc.y, inc.z ) );
delta /= steps;
// color.rgb = normal( p + 0.5 ) * 0.5 + ( p * 1.5 + 0.25 );
// color.rgb = p;
// color.a = 1.;

for ( float t = bounds.x; t < bounds.y; t + = delta ) {

float d = sample1(p + 0.5);

if ( d > threshold ) {

color.rgb = normal( p + 0.5 ) * 0.5 + ( p * 1.5 + 0.25 );
color.a = 1.;
break;

}

p + = rayDir * delta;

}

if ( color.a == 0.0 ) discard;

}
`;

// const geometry = new THREE.BoxGeometry( 1, 1, 1 );
const geometry = new THREE.SphereGeometry(1)
const material = new THREE.RawShaderMaterial( {<!-- -->
glslVersion: THREE.GLSL3,
uniforms: {<!-- -->
map: {<!-- --> value: texture },
cameraPos: {<!-- --> value: new THREE.Vector3() },
threshold: {<!-- --> value: 0.6 },
steps: {<!-- --> value: 200 }
},
vertexShader,
fragmentShader,
side: THREE.BackSide,
} );

mesh = new THREE.Mesh(geometry, material);
scene.add(mesh);

//

const parameters = {<!-- --> threshold: 0.6, steps: 200 };

function update() {<!-- -->

material.uniforms.threshold.value = parameters.threshold;
material.uniforms.steps.value = parameters.steps;

}

const gui = new GUI();
gui.add( parameters, 'threshold', 0, 1, 0.01 ).onChange( update );
gui.add( parameters, 'steps', 0, 300, 1 ).onChange( update );

window.addEventListener( 'resize', onWindowResize );

}

function onWindowResize() {<!-- -->

camera.aspect = window.innerWidth / window.innerHeight;
camera.updateProjectionMatrix();

renderer.setSize( window.innerWidth, window.innerHeight );

}

function animate() {<!-- -->

requestAnimationFrame( animate );

mesh.material.uniforms.cameraPos.value.copy( camera.position );

renderer.render( scene, camera );

}

</script>

</body>
</html>

hitBox(vec3 orig, vec3 dir) function in the source shader and src/math/Ray.js
intersectBox( box, target ) is the same. To facilitate understanding, you can substitute several special variables, such as the ray origin is (10, 10, 0), the ray direction is y = x, and the angle with the x-axis is 45 degrees. This ray will hit the center at the origin. , a cube with side length 1.

have to be aware of is

 // color.rgb = p;
// color.a = 1.;

Uncomment these two lines of code, comment out the subsequent code, and run the code to get a colored cube. Why is this part of the cube black in the space quadrant where the coordinates (-1, -1, -1) are located?
It should be this line of code vec3 p = cameraPos + bounds.x * rayDir; The obtained p point is actually always located on the surface of the struck cube, near (-1, -1, -1), and has three rgb components are all negative numbers, and negative numbers are truncated to zero, so point p in the (-1, -1, -1) space quadrant appears black

color.rgb = normal( p + 0.5 ) * 0.5 + ( p * 1.5 + 0.25 );

Why does the above code have p + 0.5? Because the three components of p are always in the closed interval [-0.5, 0.5]. After adding 0.5, they become the closed interval of [0, 1].

for ( float t = bounds.x; t < bounds.y; t + = delta ) {<!-- -->

float d = sample1(p + 0.5);

if ( d > threshold ) {<!-- -->

color.rgb = normal( p + 0.5 ) * 0.5 + ( p * 1.5 + 0.25 );
color.a = 1.;
break;

}

p + = rayDir * delta;

}

The above code looks like the ray marching algorithm, but it is not exactly the same, because the distance of each step is a constant. It actually advances along the light at a uniform speed, and samples three-dimensional Perlin at equidistant points of the light. Noise texture; if it is greater than a certain threshold, it will stop stepping. The larger the threshold, the sparser the resulting graph.