Research on performance analysis indicators of rooftop solar photovoltaic systems (Matlab code implementation)

Welcome to this blog

Advantages of bloggers:Blog content should be as thoughtful and logical as possible for the convenience of readers.

Motto:He who travels a hundred miles is half as good as ninety.

The directory of this article is as follows:

Table of Contents

1 Overview

2 Operation results

3 References

4 Matlab code and data


1 Overview

Research on performance analysis indicators of rooftop solar photovoltaic systems mainly focuses on the power generation efficiency, energy output and economic return of the system.

1. Power generation efficiency: The power generation efficiency of a photovoltaic system is an indicator of its ability to convert solar energy into electrical energy. Common efficiency metrics include the mono- or poly-silicon efficiency of a component, and the system efficiency of the entire system. High-efficiency photovoltaic modules and systems can provide more electrical energy output.

2. Energy output: Energy output refers to the total amount of electrical energy generated by the system within a certain period of time. It can be calculated by the output power and working time of the photovoltaic module. This indicator reflects the actual power generation capacity of the photovoltaic system.

3. Component deviation: Component deviation refers to the difference between the actual power generation capacity and the rated power of the photovoltaic module. Component deviation can be measured by the power deviation coefficient, which reflects the power generation performance of the component under different working conditions.

4. System reliability: System reliability refers to the stability and reliability of the system in long-term operation. Common reliability indicators include the mean time between failures (MTBF) and the mean time to repair (MTTR) of the system, which are used to evaluate the reliability and availability of the system.

5. Economic return: The economic return indicator is mainly used to evaluate the economics of photovoltaic systems. Including indicators such as payback period (ROI), net present value (NPV) and internal rate of return (IRR), used to evaluate the return and income of system investment.

These indicators can help evaluate the performance and benefits of rooftop solar photovoltaic systems, providing guidance and reference for system design, operation and maintenance.

2 Running results

Part of the code:

%% Estimaci n de la energ a
    [ELxano,EFconxano,EFgxano,ELxanoHS,EFconxmin,EFGano,ETGano,EFGanoHS]=code7830f1(Pn,SFanu,PL,PLHS,PotenciaGF);
%%
    [PSIscano,PSIssano,PSPano,GL,PSIssanoHS,PSPanoHS,GLHS]=code7830f2(ELxano,EFconxano,EFgxano,ELxanoHS,EFGano,ETGano,EFGanoHS);

%% Representaci n gr fica
fig=figure(1);
    clf(fig,'reset');

hold on
    plot(Pn,PSIscano)
    plot(Pn,PSIssano,'--','Color',[0.4660 0.6740 0.1880],'LineWidth',1.5)
    plot(Pn,PSIssanoHS,'Color',[0.4660 0.6740 0.1880],'LineWidth',1.5)
    plot(Pn,PSPano,'--','Color',[0.4940 0.1840 0.5560],'LineWidth',1.5)
    plot(Pn,PSPanoHS,'Color',[0.4940 0.1840 0.5560],'LineWidth',1.5)
    plot(Pn,GL,'--','Color',[0.6350 0.0780 0.1840],'LineWidth',1.5)
    plot(Pn,GLHS,'Color',[0.6350 0.0780 0.1840] ,'LineWidth',1.5)
   
    xlabel('P_0(kW)','FontSize',14);
ylabel('Indices','FontSize',14)
    set(gca,'FontSize',14);

[ZEI,Posi]=min(abs(PSIscano-PSIssano));
    plot(Pn(Posi),PSIscano(Posi),'*','Color',[0.4660 0.6740 0.1880])
     X=['ZEI'];
    disp(X)
    Pn(Posi)
    PSIscano(Posi)*100

[ZEIHS,Posi]=min(abs(PSIscano-PSIssanoHS));
    plot(Pn(Posi),PSIscano(Posi),'diamond','Color',[0.4660 0.6740 0.1880])
    X=['ZEI HS'];
    disp(X)
    Pn(Posi)
    PSIscano(Posi)*100

[maxPS,Posi]=max(PSPano);
    plot(Pn(Posi),PSPano(Posi),'*','Color',[0.4940 0.1840 0.5560])
     X=['PS maximo'];
    disp(X)
    Pn(Posi)
    PSPano(Posi)*100

[maxPS,Posi]=max(PSPanoHS);
    plot(Pn(Posi),PSPanoHS(Posi),'diamond','Color',[0.4940 0.1840 0.5560])
    X=['PS maximo HS'];
    disp(X)
    Pn(Posi)
    PSPanoHS(Posi)*100

[minGL,Posi]=min(GL);
    plot(Pn(Posi),GL(Posi),'*','Color',[0.6350 0.0780 0.1840])
    X=['GLmin'];
    disp(X)
    Pn(Posi)
    GL(Posi)*100

[maxGL,Posi]=min(GLHS);
    plot(Pn(Posi),GLHS(Posi),"diamond",'Color',[0.6350 0.0780 0.1840])
    X=['GLmin HS'];
    disp(X)
    Pn(Posi)
    GLHS(Posi)*100

   xlim([0 2000])
   ylim([-0.6 1])

%% Estimaci n de la energ a
[ELxano,EFconxano,EFgxano,ELxanoHS,EFconxmin,EFGano,ETGano,EFGanoHS]=code7830f1(Pn,SFanu,PL,PLHS,PotenciaGF);
%%
[PSIscano,PSIssano,PSPano,GL,PSIssanoHS,PSPanoHS,GLHS]=code7830f2(ELxano,EFconxano,EFgxano,ELxanoHS,EFGano,ETGano,EFGanoHS);

%% Representaci n gr fica
fig=figure(1);
clf(fig,’reset’);

hold on
plot(Pn,PSIscano)
plot(Pn,PSIssano,’–‘,’Color’,[0.4660 0.6740 0.1880],’LineWidth’,1.5)
plot(Pn,PSIssanoHS,’Color’,[0.4660 0.6740 0.1880],’LineWidth’,1.5)
plot(Pn,PSPano,’–‘,’Color’,[0.4940 0.1840 0.5560],’LineWidth’,1.5)
plot(Pn,PSPanoHS,’Color’,[0.4940 0.1840 0.5560],’LineWidth’,1.5)
plot(Pn,GL,’–‘,’Color’,[0.6350 0.0780 0.1840],’LineWidth’,1.5)
plot(Pn,GLHS,’Color’,[0.6350 0.0780 0.1840] ,’LineWidth’,1.5)

xlabel(‘P_0(kW)’,’FontSize’,14);
ylabel(‘Indices’,’FontSize’,14)
set(gca,’FontSize’,14);

[ZEI,Posi]=min(abs(PSIscano-PSIssano));
plot(Pn(Posi),PSIscano(Posi),’*’,’Color’,[0.4660 0.6740 0.1880])
X=[‘ZEI’];
disp(X)
Pn(Posi)
PSIscano(Posi)*100

[ZEIHS,Posi]=min(abs(PSIscano-PSIssanoHS));
plot(Pn(Posi),PSIscano(Posi),’diamond’,’Color’,[0.4660 0.6740 0.1880])
X=[‘ZEI HS’];
disp(X)
Pn(Posi)
PSIscano(Posi)*100

[maxPS,Posi]=max(PSPano);
plot(Pn(Posi),PSPano(Posi),’*’,’Color’,[0.4940 0.1840 0.5560])
X=[‘PS maximo’];
disp(X)
Pn(Posi)
PSPano(Posi)*100

[maxPS,Posi]=max(PSPanoHS);
plot(Pn(Posi),PSPanoHS(Posi),’diamond’,’Color’,[0.4940 0.1840 0.5560])
X=[‘PS maximo HS’];
disp(X)
Pn(Posi)
PSPanoHS(Posi)*100

[minGL,Posi]=min(GL);
plot(Pn(Posi),GL(Posi),’*’,’Color’,[0.6350 0.0780 0.1840])
X=[‘GLmin’];
disp(X)
Pn(Posi)
GL(Posi)*100

[maxGL,Posi]=min(GLHS);
plot(Pn(Posi),GLHS(Posi),”diamond”,’Color’,[0.6350 0.0780 0.1840])
X=[‘GLmin HS’];
disp(X)
Pn(Posi)
GLHS(Posi)*100

xlim([0 2000])
ylim([-0.6 1])

3 References

Some of the content in the article is quoted from the Internet. The source will be indicated or cited as a reference. It is inevitable that there will be some unfinished information. If there is anything inappropriate, please feel free to contact us to delete it.

[1] Bai Jianyong. Research on technical and economic evaluation and operation model selection of rooftop photovoltaic systems [D]. North China Electric Power University, 2014. DOI: 10.7666/d.D529260.

[2] Bai Jianyong. Research on technical and economic evaluation and operation model selection of rooftop photovoltaic systems [D]. North China Electric Power University, 2015.

[3] Zhang Hua. Research on assessment of photovoltaic utilization potential on urban building rooftops[D]. Tianjin University[2023-10-15].DOI:CNKI:CDMD:1.1018.025701.

[4] G. Jiménez-Castillo, A.J. Martínez-Calahorro, C. Rus-Casas, A. Snytko, F.J. Mu?oz-Rodríguez (2023) Performance analysis indices for Rooftop Solar Photovoltaic system.

4 Matlab code and data